Math, asked by srinivasambore8, 13 hours ago

If a and b are zeroes and the quadratic polynomial f(x) = x² - 4x -12, then the value of 1a+ 1/b - a×b is a 35/3 b -35/3 c32//6 d -32/6​

Answers

Answered by MaheswariS
8

\underline{\textbf{Given:}}

\textsf{a and b are zeroes of the quadratic polynomial}\;\mathsf{f(x)=x^2-4x-12}

\underline{\textbf{To find:}}

\textsf{The value of}

\mathsf{\dfrac{1}{a}+\dfrac{1}{b}-a\,b}

\underline{\textbf{Solution:}}

\mathsf{}

\mathsf{Consider,}

\mathsf{f(x)=x^2-4x-12}

\mathsf{Sum\;of\;zeroes=\dfrac{-b}{a}}

\mathsf{a+b=\dfrac{-(-4)}{1}}

\implies\boxed{\mathsf{a+b=4}}

\mathsf{Product\;of\;zeroes=\dfrac{c}{a}}

\mathsf{ab=\dfrac{-12}{1}}

\implies\boxed{\mathsf{ab=-12}}

\mathsf{Now,}

\mathsf{\dfrac{1}{a}+\dfrac{1}{b}-a\,b}

\mathsf{=\dfrac{a+b}{ab}-a\,b}

\mathsf{=\dfrac{4}{-12}-(-12)}

\mathsf{=\dfrac{-1}{3}+12}

\mathsf{=\dfrac{-1+36}{3}}

\mathsf{=\dfrac{35}{3}}

\implies\boxed{\mathsf{\dfrac{1}{a}+\dfrac{1}{b}-a\,b=\dfrac{35}{3}}}

\underline{\textbf{Answer:}}

\mathsf{Option\;(a)\;is\;correct}

\underline{\textbf{Find more:}}

Answered by abhijanmohanty400
1

TWO ZEROES ARE = a & b

Given Polynomial = x²-4x-12

so,

sum of zeroes = -b/a

a+b = -b/a

a+b = -(-4)/1

a+b = 4

product of zeroes = c/a

a×b = (-12)/1

a×b = -12

NOW, TO FIND

1/a + 1/b - a×b

by taking L.C.M

= b+a/ab - ab

= 4/-12 - (-12) (sum of zeroes =4 & product = -12

= -1/3 +12

(again by taking L.C.M)

= -1+36/3

= 35/3

HENCE THE ANSWER IS 35/3

TANANK U

Similar questions