Math, asked by Tanu961, 7 months ago

If a and b are zeroes of polynomial 3x^2 + x + 2 then a^2 + b^2 =​

Answers

Answered by pulakmath007
45

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

If  \alpha \:  \: and \:  \:  \beta \: are the zeroes of the quadratic polynomial a {x}^{2}  + bx + c

Then

 \displaystyle \:  \alpha  +   \beta \:  =  -  \frac{b}{a}  \:  \: and \:  \:   \: \alpha \beta \:  =  \frac{c}{a}

GIVEN

a and b are zeroes of polynomial

3 {x}^{2}  + x + 2

TO DETERMINE

 {a}^{2}  +  {b}^{2}

CALCULATION

Since a and b are zeroes of the given polynomial

So

\displaystyle a+ b  =  -  \frac{1}{3}  \:  \: and \:  \: ab =  \frac{2}{3}

\displaystyle  {a}^{2}  +  {b}^{2}

 = \displaystyle ( {a + b)}^{2}  - 2ab

 = \displaystyle {(  \frac{ - 1}{ \:  \: 3} )}^{2}  - 2 \times  \frac{2}{3}

  = \displaystyle  \frac{1}{9}  -  \frac{4}{3}

 = \displaystyle  -  \frac{11}{9}

Answered by jasmine2497
1

Step-by-step explanation:

let a and b are the zeroes of the polynomials

3x²+x+2

a+b = -b/a

ab = c/a

a²+b² = (a+b)²-2ab

= (-b/a)² - 2×c/a

= ( -1/3)² - 2× 2/3

= 1/9 - 4/3

= 1-12/9 = -11/9

Similar questions