if a and b are zeroes of polynomial 3x²-6x+4 find (a/b + b/a)+2(1/a+ 1/b)+3ab
Answers
Answer:
Given, quadratic polynomial p(x) = √3x2 - 8x + 4√3
Given, quadratic polynomial p(x) = √3x2 - 8x + 4√3In order to find out the zeros of p(x), p(x) = 0.
Given, quadratic polynomial p(x) = √3x2 - 8x + 4√3In order to find out the zeros of p(x), p(x) = 0.⇒ √3x2 - 8x + 4√3 = 0
Given, quadratic polynomial p(x) = √3x2 - 8x + 4√3In order to find out the zeros of p(x), p(x) = 0.⇒ √3x2 - 8x + 4√3 = 0√3x2 - 6x - 2x + 4√3 = 0
Given, quadratic polynomial p(x) = √3x2 - 8x + 4√3In order to find out the zeros of p(x), p(x) = 0.⇒ √3x2 - 8x + 4√3 = 0√3x2 - 6x - 2x + 4√3 = 0 √3x(x - 2√3) - 2 (x - 2√3) = 0
Given, quadratic polynomial p(x) = √3x2 - 8x + 4√3In order to find out the zeros of p(x), p(x) = 0.⇒ √3x2 - 8x + 4√3 = 0√3x2 - 6x - 2x + 4√3 = 0 √3x(x - 2√3) - 2 (x - 2√3) = 0⇒ (x - 2√3)(√3x-2) = 0
Given, quadratic polynomial p(x) = √3x2 - 8x + 4√3In order to find out the zeros of p(x), p(x) = 0.⇒ √3x2 - 8x + 4√3 = 0√3x2 - 6x - 2x + 4√3 = 0 √3x(x - 2√3) - 2 (x - 2√3) = 0⇒ (x - 2√3)(√3x-2) = 0 ⇒ x = 2√3 and
Given, quadratic polynomial p(x) = √3x2 - 8x + 4√3In order to find out the zeros of p(x), p(x) = 0.⇒ √3x2 - 8x + 4√3 = 0√3x2 - 6x - 2x + 4√3 = 0 √3x(x - 2√3) - 2 (x - 2√3) = 0⇒ (x - 2√3)(√3x-2) = 0 ⇒ x = 2√3 and2/root3
Given, quadratic polynomial p(x) = √3x2 - 8x + 4√3In order to find out the zeros of p(x), p(x) = 0.⇒ √3x2 - 8x + 4√3 = 0√3x2 - 6x - 2x + 4√3 = 0 √3x(x - 2√3) - 2 (x - 2√3) = 0⇒ (x - 2√3)(√3x-2) = 0 ⇒ x = 2√3 and2/root3Thus a and b are known find accordingly