if a and b are zeroes of polynomial pX= x²-3x+2. then find 1/a+1/a
Answers
Given :
To Find :
Theory :
If are zeroes of quadratic polynomial
Then ,
Solution
We have ,
We know that
And
We have to find the value of
Now put the values of equation(1)and(2)
Therefore ,
Step-by-step explanation:
Given :
\sf\:p(x)=x^2-3x+2p(x)=x
2
−3x+2
To Find :
\sf\dfrac{1}{\alpha}+\dfrac{1}{\beta}
α
1
+
β
1
Theory :
If \sf \alpha \: and \: \betaαandβ are zeroes of quadratic polynomial
\sf f(x) = {x}^{2} + bx + cf(x)=x
2
+bx+c
Then ,\sf \alpha + \beta = \dfrac{ - cofficient \: of \: x}{cofficient \: of \: x {}^{2} }α+β=
cofficientofx
2
−cofficientofx
\sf \: and \: \alpha \beta = \dfrac{constant}{cofficient \: of \: x {}^{2} }andαβ=
cofficientofx
2
constant
Solution
We have ,
\rm\:p(x)=x^2-3x+2p(x)=x
2
−3x+2
We know that
\sf \alpha + \beta = \dfrac{ - cofficient \: of \: x}{cofficient \: of \: x {}^{2} }α+β=
cofficientofx
2
−cofficientofx
\sf \implies \alpha + \beta = \dfrac{ - ( - 3)}{ 1} = 3...(1)⟹α+β=
1
−(−3)
=3...(1)
And
\sf \: and \: \alpha \beta = \dfrac{constant}{cofficient \: of \: x {}^{2} }andαβ=
cofficientofx
2
constant
\sf\implies\alpha\times\beta=\dfrac{2}{1}=2..(2)⟹α×β=
1
2
=2..(2)
We have to find the value of
\sf\dfrac{1}{\alpha}+\dfrac{1}{\beta}
α
1
+
β
1
\sf=\dfrac{\alpha+\beta}{\alpha\times\beta}=
α×β
α+β
Now put the values of equation(1)and(2)
\sf=\dfrac{3}{2}=
2
3
Therefore ,
\sf\dfrac{1}{\alpha}+\dfrac{1}{\beta}=\dfrac{3}{2}
α
1
+
β
1
=
2
3