Math, asked by jjtfeb11, 11 months ago

if a and b are zeroes of the polynomial p(x)= 6x^2-5x+k such that a-b=1/6, find the value of k

Answers

Answered by Anonymous
14

SOLUTION

Given,

p(x)=6x^2-5x+k,such that alpha-beta=1/6

 \alpha  +  \beta  =  -  \frac{b}{a}  =  \frac{5}{6}  \\  \\  \alpha  \beta  =  \frac{c}{a}  =  \frac{k}{6}  \\  \\   \alpha  -  \beta  =  \frac{1}{6}  \\  \\  =  >  {( \alpha  -  \beta )}^{2}  = ( \frac{1}{6} )  {}^{2}   \\  \\  =  > ( \alpha   +   \beta ) {}^{2}  - 4 \alpha  \beta  = ( \frac{1}{6} ) {}^{2}  \\  \\  =  > ( \frac{5}{6} ) {}^{2}  - 4( \frac{k}{6} ) =  \frac{1}{36}  \\  \\  =  >  \frac{25}{36}  -  \frac{2k}{3}  =  \frac{1}{36}  \\   \\  =  >  \frac{25 - 24k}{36}  =  \frac{1}{36}  \\  \\  =  > 25 - 24k = 1 \\  \\  =  > 25 - 1 = 24k \\  \\   =  > 24 = 24k \\  \\  =  > k = 1

Hope it helps ☺️

Answered by Anonymous
13

Answer:

Step-by-step explanation:a=alpha

b= beta

so...

a+b = 5/6

and

a-b =1/6

so...

a+b=5/6

a-b =1/6

_______

2a. =1

a=1/2

p(x)=6x^2-5x+k

p(a)=6(1/2)^2-5(1/2)+k

0 =6(1/4)-5/2+k

0 =(3/2)-(5/2)+k

0=-(2/2)+k

k-1=0

so. k=1

Similar questions