Math, asked by baishyaanisha94, 2 months ago


If a and B are zeros of the polynomial f(t) = t² – 4t + 3, then find a⁴B³+a³B⁴​

Answers

Answered by FFdevansh
2

✰WRITTEN BY FFdevansh✰

Aɴsᴡᴇʀ-»"The value of \left( { \alpha}^{ 4 }\quad \times \quad { \beta}^{ 3 } \right) \quad +\quad \left( { \alpha}^{ 3 }\quad \times \quad { \beta}^{ 4 } \right) \quad =\quad 108(α

4

×β

3

)+(α

3

×β

4

)=108

Solution:

f\left( t \right) \quad =\quad { t }^{ 2 }\quad -\quad 4t\quad +\quad 3f(t)=t

2

−4t+3

=\quad { t }^{ 2 }\quad -\quad t\quad -\quad 3t\quad +3=t

2

−t−3t+3

=\quad t\left( t\quad -\quad 1 \right) \quad -3\left( t\quad -\quad 1 \right)=t(t−1)−3(t−1)

=\quad \left( t\quad -\quad 3 \right) \left( t\quad -\quad 1 \right)=(t−3)(t−1)

\Rightarrow \quad t\quad =\quad 3;\quad 1⇒t=3;1

So,

The zeros are 3 and 1

If alpha = 3

If beta = 1

From the question, we get

{ \alpha }^{ 4 }\quad \times \quad { \beta }^{ 3 }\quad \times \quad { \alpha }^{ 3 }\quad \times \quad { \beta }^{ 4 }\quad =\quad { 3 }^{ 4 }\quad \times \quad { 1 }^{ 3 }\quad \times \quad { 3 }^{ 3 }\quad \times \quad { 1 }^{ 4 }α

4

×β

3

×α

3

×β

4

=3

4

×1

3

×3

3

×1

4

\left( { \alpha }^{ 4 }\quad \times \quad { \beta }^{ 3 } \right) \quad +\quad \left( { \alpha }^{ 3 }\quad \times \quad { \beta }^{ 4 } \right) \quad =\quad \left( { 3 }^{ 4 }\quad \times \quad { 1 }^{ 3 } \right) \quad +\quad \left( { 3 }^{ 3 }\quad \times \quad { 1 }^{ 4 } \right)(α

4

×β

3

)+(α

3

×β

4

)=(3

4

×1

3

)+(3

3

×1

4

)

=\quad 81\quad +\quad 27=81+27

{ \alpha }^{ 4 }\quad \times \quad { \beta }^{ 3 }\quad \times \quad { \alpha }^{ 3 }\quad \times \quad { \beta }^{ 4 }\quad =\quad 108α

4

×β

3

×α

3

×β

4

=108 "

Similar questions