Math, asked by vedmohit48, 21 days ago

if a and B are zeros of x^2-8×+k such that a-B =2 then value of k is​

Answers

Answered by 12thpáìn
3

Given

  • p(x)= x²-8x+k
  •  \alpha and  \beta are zeros of p(x)

To Find

  • value of k

Solution

  • p(x)= x²-8x+k

here a = 1 , b = -8 and c = k

We know that

 Sum~~ of~~ zero = \alpha + \beta = \dfrac{-b}{a}

 = \alpha + \beta = \dfrac{-( - 8)}{1}

= \alpha + \beta  =  8

Product  \:  \: of \:  \:  zero = \alpha  \beta  =  \dfrac{c}{a}

 \alpha  \beta  = k

We know that

  • (a-b)² = (a+b)²-4ab

{( \alpha  -  \beta ) }^{2}  ={ ( \alpha   + \beta )}^{2}  - 4 \alpha  \beta

  • putting the values

{( 2) }^{2}  ={ (8)}^{2}  - 4 k

4  =64  - 4 k

 - 60 =  - 4 k

 k = 15 \bold{ \:  }\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \hline \bf

  • if a and B are zeros of x^2-8×+k such that a-B =2 then value of k is 15.

More to know

  • \begin{gathered}\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\gray{\begin{gathered}\tiny\begin{gathered}\small{\small{\small{\small{\small{\small{\small{\small{\small{\small{\begin{gathered}\begin{gathered}\begin{gathered}\\\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\red{ \bigstar} \: \underline{\bf{\orange{More \: Useful \: Formula}}}\\ {\boxed{\begin{array}{cc}\dashrightarrow \sf(a + b)^{2} = {a}^{2} + {b}^{2} + 2ab \\\\\dashrightarrow \sf(a - b)^{2} = {a}^{2} + {b}^{2} - 2ab \\\\\dashrightarrow \sf(a + b)(a - b) = {a}^{2} - {b}^{2} \\\\\dashrightarrow \sf(a + b) ^{3} = {a}^{3} + b^{3} + 3ab(a + b) \\\\ \dashrightarrow\sf(a - b) ^{3} = {a}^{3} - b^{3} - 3ab(a - b) \\ \\\dashrightarrow\sf a ^{3} + {b}^{3} = (a + b)(a ^{2} + {b}^{2} - ab) \\\\\dashrightarrow \sf a ^{3} - {b}^{3} = (a - b)(a ^{2} + {b}^{2} + ab )\\\\\dashrightarrow \sf{a²+b²=(a+b)²-2ab}\\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}}}}}}}}}}}\end{gathered}\end{gathered}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\\ \end{gathered}
Similar questions