if A and B be the point (3,4,5) and (-1,3,-7) respectively. find the equation of the set of point p such that PA² + PB² = k², where k is a constant.
Answers
Answered by
14
Given:-
- A and B be the point (3,4,5) and (-1,3,-7).
- The set of point p such that PA² + PB² = k²
To find:-
- Find the equation ..?
Solutions:-
- The coordinates of point A and B are given as (3, 4, 5) and (-1, 3, -7).
- Let the coordinates of point P be (x, y, z).
On using distance, we obtain.
PA² = (x - 3)² + (y - 4)² + (z - 5)²
= x² + 9 - 6x + y² + 16 - 8y + z² + 25 - 10z
= x² - 6x + y² - 8y + z² - 10z + 50
PB² = (x + 1)² + (y - 3)² + (z - 7)²
= x² + 2x + y² - 6y + z² + 14z + 59
Now, PA² + PB² = K²
=> (x² - 6x + y² - 8y + z² - 10z + 50) + (x² + 2x + y² - 6y + z² + 14z + 59) = K²
=> 2x² + 2y² + 2z² - 4x - 14y + 4z + 109 = K²
=> 2(x² + y² + z² - 2x - 7y + 2z) = K² - 109
=> x² + y² + z² - 2x - 7y + 2z = K² - 109 / 2
Hence, the required equation is 2(x² + y² + z² - 2x - 7y + 2z) = K² - 109 / 2.
Similar questions