If A and B be the points (1.5) and (-4,7) then find the point P which divides AB internally in the ratio 2:3.
Answers
Answered by
3
Answer:
The point p is (-11/5, 11/5)
Answered by
1
The point P which divides AB internally in the ratio 2:3 is (-1, 19/5 )
Given:
A and B be the points (1,5) and (-4,7)
The ratio that P divides AB = 2:3
To find:
The point P which divides AB internally in the ratio 2:3.
Solution:
NOTE:
The formula for a point P which divides line formed by (x₁, y₁) and (x₂, y₂) in ration m:n is given by
[mx₂+nx₁ /m+n, my₂+ny₁ / m+n]
From given data the points are A(1,5) and B(-4,7) and Ratio m : n = 2:3
The required point P = [(2)(-4)+3(1) /2+3, 2(7)+3(5) / 2+3]
= [ -8+3/5, 14+15/5 ]
= [ -5/5, 19/5 ]
= (-1, 19/5 )
Therefore,
The point P which divides AB internally in the ratio 2:3 is (-1, 19/5 )
#SPJ2
Similar questions