Math, asked by AlastorMoody, 6 months ago

if a and b roots of the equation 4x^2+3x++7=0 then 1/a+1/b is

Answers

Answered by TheFairyTale
2

AnswEr :-

 \sf\dfrac{1}{a}  +  \dfrac{1}{b}  =  -  \dfrac{ 3}{7}

GivEn :-

  • a and b are the roots of equation 4x^2 + 3x + 7 = 0

To Find :-

  • The value of 1/a + 1/b

Step-by-step explanation:

We know,

The formula of Quadratic equation,

 \implies \boxed{ \sf \: p {x}^{2}  + qx + r = 0 \: (p \neq0)}

 \sf \: Sum \:  of \:  the  \: roots  =  -  \dfrac{q}{p}

 \therefore \sf a + b =   - \dfrac{3}{4}

And,

 \sf \: Product  \: of  \: roots =  \dfrac{r}{p}

 \therefore \sf \: a \times b =  \dfrac{7}{4}

Now,

 \sf \:  \dfrac{1}{a}  +  \dfrac{1}{b}

 :  \implies \sf \:  \dfrac{a + b}{ab}

Now, putting the values,

 \implies \sf \:    \dfrac{  - \dfrac{3}{4} }{ \dfrac{7}{4} }

 \implies \sf \:   - \dfrac{3}{4}  \times  \dfrac{4}{7}

 \boxed{ \red{ \sf \therefore  \dfrac{1}{a}  +  \dfrac{1}{b}  =  -  \dfrac{ 3}{7} }}

Similar questions