Math, asked by meenalshukla79, 4 months ago

. If a and Bare the zeroes of the quadratic polynomial f(x) = x ^ 2 - x - 4 , find the Find the value of 1/alpha + 1/beta - alpha*beta​

Answers

Answered by shizashaheem
3

Answer:

Step-by-step explanation:

given: f(x) = x²- x - 4

a = 1 , b = -1 , c = -4

to find: \frac{1}{\alpha }+\frac{1}{\beta } - \alpha\beta

lcm = αβ

\frac{\beta }{\alpha \beta }+\frac{\alpha }{\alpha \beta } - \frac{\alpha\beta^{2}}{\alpha \beta }

\frac{\beta+\alpha }{\alpha \beta }- \frac{\alpha\beta^{2}}{\alpha \beta } [equation 1]

sum → α+β → \frac{-b}{a}

\frac{-(-1)}{1} = \frac{1}{1} = 1

product → αβ → \frac{c}{a}

\frac{-4}{1} = -4

substituting in equation 1...

\frac{1}{-4} - \frac{(-4)^{2} }{-4}

\frac{1}{-4} - \frac{16 }{-4}

\frac{1-16}{-4}

\frac{-15}{-4} = \frac{15}{4}

hope it helped! pelase mark as brainliest

Similar questions