Math, asked by kourjass7977, 8 months ago

If a and Bare zeroes of 2x2 -X-6 then the value of 1/ a + 1/B is

Answers

Answered by irshadsyed281
6

\bold{\blue{\underline{\red{G}\pink{iv}\green{en}\purple{:-}}}}

  • P(x) = 2x² - x - 6

\bold{\blue{\underline{\red{Zeros}\pink{\:of\:}\green{\:the\:polynomials}\purple{:-}}}}

  • Zeros of the polynomial is the value of the variable for which when replaced in the polynomial the value for the polynomial changes to zero.

\bold{\blue{\underline{\red{General}\pink{\:form \:of }\green{\:polynomial}\purple{:-}}}}

  • \bold{a_{n}x^n + a_{n-1}x^{n-1} +...... + a_{2}x^2 + a_{1}x + a_{0}}
  • Where ' \bold{a_{n}  , a_{n-1} ...... a_{1} , a_{0}} ' are Real numbers and 'n' is an integer .

\bold{\blue{\underline{\red{Q}\pink{uest}\green{ion}\purple{:-}}}}

  • To find  \bold{\frac{1}{\alpha}\:+\:\frac{1}{\beta}} . If 'α' and 'β' are the roots of the given equation.

\bold{\blue{\underline{\red{S}\pink{olut}\green{ion}\purple{:-}}}}

    \bold{\blue{\underline{\red{To}\pink{\:find}\green{\:\frac{1}{\alpha} \:and\:\frac{1}{\beta} }\purple{:-}}}}

  • \bold{\frac{1}{\alpha}\:+\:\frac{1}{\beta}}

  • LCM = αβ
  • \bold{\frac{\beta\:+\:\alpha}{\alpha\beta} }  ⇒ (i)

    \bold{\blue{\underline{\red{We}\pink{\:know}\green{\:that}\purple{:-}}}}

  • α + β = \bold{\frac{-b}{a}}

  • α + β = \bold{\frac{-(-1)}{2}}

  • α + β = \bold{\frac{1}{2}}  ⇒ (ii)

  • αβ = \bold{\frac{c}{a} }

  • αβ = \bold{\frac{-6}{2} }  

  • αβ = \bold{-3} ⇒ (iii)
  • Now, by replacing '(ii)' and '(iii)' in '(i)' we get:
  • \bold{\frac{\beta\:+\:\alpha}{\alpha\beta} } =  \bold{\frac{1}{-3\:\times\: 2}}  

     SOLUTION   ⇒      \boxed{\bold{\frac{1}{\alpha}\:+\:\frac{1}{\beta}} \:= \:\bold{\frac{1}{-6}}}

Similar questions