Math, asked by rajdevsingh2255, 3 months ago

If a and ß be the zeroes of the polynomial 2x² + 3x – 6, find the value of
 \alpha  \div  \beta  +  \beta  \div  \alpha

Answers

Answered by ananthadevi
1

Step-by-step explanation:

I HOPE THIS WILL HELP U

MARK ME AS BRAINLIST

Attachments:
Answered by Anonymous
3

\huge\fbox\red{S}\fbox\pink{O}\fbox\blue{L}\fbox\green{U}\fbox\blue{T}\fbox\orange{I}\fbox\green{O}\fbox\pink{N}

2x {}^{2}  + 3x = 6 \\  \alpha  +  \beta  =  \frac{ - b}{a}  \\    \;\large{\boxed{\bf{\red{\alpha  +  \beta  = \frac{ - 3}{2}}}}}  \\  \\  \alpha  \times  \beta  =  \frac{c}{a }  \\  \alpha  \times  \beta  =  \frac{ - 6}{2}   \\  \;\large{\boxed{\bf{\red{\alpha  \times  \beta  =  - 3}}}}

 \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha  } \\   \\ \frac{ \alpha  {}^{2}  +  \beta  {}^{2} }{ \alpha  \beta }  \\ \\  \sf\blue{Using\: Formula ..\: } \\ \\  ⇒ \frac{( \alpha  +  \beta ) {}^{2} - 2 \alpha  \beta  }{ \alpha  \beta }  \\ ⇒ \frac{( \frac{ - 3}{2}) {}^{2}  - 2( - 3) }{ - 3}  \\ ⇒   \frac{ \frac{9}{4}  + 6}{ - 3} \\  ⇒ \frac{33}{4 \times  - 3}  =    \sf\red{\frac{ - 11}{4}}

\;\large{\boxed{\bf{\purple{Answer \: is \:  \frac{ - 11}{4} }}}}

\sf\blue{hope \: this \: helps \: you!! \: }

Happy Learning ;)

@Mahor2111

Similar questions