If a, ß are the root of the equation x2+px+q=0 find the value of a3 +B3?
Answers
Answered by
11
EXPLANATION.
α,β are the roots of the equation,
f(x) = x² + px + q = 0.
Sum of zeroes of quadratic equation.
⇒ α + β = -b/a.
⇒ α + β = -p. .......(1).
Products of zeroes of quadratic equation.
⇒ αβ = c/a.
⇒ αβ = q. ........(2).
To find value of (α³ + β³).
Formula of (a³ + b³) = (a + b)(a² + b² - ab).
Similarly,
⇒ (α³ + β³) = (α + β)(α² + β² - αβ)
As we know that,
Formula of (α² + β²),
⇒ (α² + β²) = (α + β)² - 2αβ.
Put this value in equation, we get.
⇒ (α + β)[(α + β)² - 2αβ - αβ].
⇒ (α + β)[(α + β)² - 3αβ].
⇒ (-p)[(-p)² - 3(q)].
⇒ (-p)[p² - 3q].
⇒ -p³ + 3pq.
⇒ 3pq - p³.
Value of (α³ + β³) = 3pq - p³.
Similar questions