Math, asked by esakimuthu, 8 months ago



. If a, ß are the roots of 7x^2
+ ax + 2 = 0 and if ß-a =
-13
Find the values of a.

Answers

Answered by Anonymous
3

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:}}}}

\sf{The \ value \ of \ a \ is \ \frac{195+\sqrt105}{16} \ or \ \frac{195-\sqrt105}{16}}

\sf\orange{Given:}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{7x^{2}+ax+2=0}}

\sf{\implies{\beta-a=-13}}

\sf\pink{To \ find:}

\sf{The \ value \ of \ a.}

\sf\green{\underline{\underline{Solution:}}}

\sf{\implies{\beta-a=-13}}

\sf{\implies{\therefore{\beta=-13+a}}}

\sf{But \ \beta \ is \ the \ roots \ of \ given}

\sf{equation.}

\sf{\therefore{Substituting \ \beta \ in \ equation \ will \ give}}

\sf{result \ zero.}

\sf{\implies{\therefore{7(-13+a)^{2}+a(-13+a)+2=0}}}

\sf{\implies{7(169-26a+a^{2})-13a+a^{2}+2=0}}

\sf{\implies{1183-182a+7a^{2}-13a+a^{2}+2=0}}

\sf{\implies{7a^{2}+a^{2}-182a-13a+1183+2=0}}

\sf{\implies{8a^{2}-195a+1185=0}}

\sf{Here, \ a=8, \ b=-195 \ and \ c=1185}

\sf{By \ formula \ method}

\sf{b^{2}-4ac=(-195)^{2}-4(8)(1185)}

\sf{\implies{b^{2}-4ac=38025-37920}}

\sf{\implies{b^{2}-4ac=105}}

\sf{\implies{a=\frac{-b+\sqrt{b^{2}-4ac}}{2a} \ or \ \frac{-b-\sqrt{b^{2}-4ac}}{2a}}}

\sf{\implies{a=\frac{195+\sqrt105}{16} \ or \ \frac{195-\sqrt105}{16}}}

\sf\purple{\tt{\therefore{The \ value \ of \ a \ is \ \frac{195+\sqrt105}{16} \ or \ \frac{195-\sqrt105}{16}}}}

Similar questions