If a, ß are the roots of the equation 8x² – 3x +27 =0, then
the value of (a²/ß + ß²/a)⅓ is
Answers
Answered by
18
EXPLANATION.
α,β are the roots of the equation.
⇒ F(x) = 8x² - 3x + 27 = 0.
As we know that,
Sum of zeroes of a quadratic equation.
⇒ α + β = -b/a.
⇒ α + β = -(-3)/8 = 3/8.
Products of zeroes of a quadratic equation.
⇒ αβ = c/a.
⇒ αβ = 27/8.
To find the value of.
(1) = (α²/β + β²/α)^1/3.
⇒ (α²/β)^1/3 + (β²/α)^1/3.
⇒ (α³)^1/3 + (β³)^1/3/(αβ)^1/3.
⇒ (α + β)/(αβ)^1/3.
⇒ (3/8)/(27/8)^1/3.
⇒ (3/8)/(3/2)³^1/3.
⇒ (3/8)/3/2.
⇒ 3/8 X 2/3.
⇒ 1/4.
MORE INFORMATION.
Conjugate roots.
If D < 0.
One root = α + iβ.
Other root = α - iβ.
If D > 0.
One root = α + √β.
Other root = α - √β.
Answered by
11
Answer:
1/4
Step-by-step explanation:
If α, β are the roots of the equation 8x² – 3x +27 =0, then
the value of (α²/β + β²/α)^⅓ is
• α+β = -b/a = 3/8
• αβ = c/a = 27/8
Therefore,
(α²/β + β²/α)^⅓ = [(a^3+b^3)/(αβ)]^⅓
α+β/(αβ)^⅓
(3/8)/(27/8)^⅓
2/8
1/4
Similar questions