Math, asked by womenolution, 7 months ago


If a,ß are the roots of the equation
8x ^{2}   - 3x + 27 = 0
then the value of
( \frac{ \alpha ^{2} }{ \beta } ) ^{ \frac{1}{3} }  + ( \frac{ \beta  ^{2} }{ \alpha } ) {}^{ \frac{1}{3} }
is

Answers

Answered by amansharma264
27

EXPLANATION.

 \sf :  \implies \:  \alpha  \: and \:  \beta  \: are \: roots \: of \: equation \:  \implies \: 8 {x}^{2}  - 3x + 27 = 0 \\  \\ \sf :  \implies \: \: to \: find \: the \: value \: of \:  (\dfrac{ { \alpha }^{2} }{ \beta } ) {}^{ \dfrac{1}{3} }   \:  + \:  (\frac{ \beta  {}^{2} }{ \alpha } ) {}^{ \dfrac{1}{3} }

\sf :  \implies \: \: sum \: of \: roots \: of \: quadratic \: equation \\  \\ \sf :  \implies \: \:  \alpha  +  \beta  =  \frac{ - b}{a} \\  \\ \sf :  \implies \: \:  \alpha  +  \beta  =  \frac{3}{8}  \:  \: .......(1) \\  \\ \sf :  \implies \: \: product \: of \: roots \: of \: quadratic \: equation \\  \\ \sf :  \implies \: \:  \alpha  \beta  =  \frac{c}{a} \\  \\  \sf :  \implies \: \:  \alpha  \beta  =  \frac{27}{8}  \:  \: ......(2)

\sf :  \implies \: \:  (\dfrac{ { \alpha }^{2} }{ \beta }) {}^{ \dfrac{1}{3} }   \:  +  \:  (\dfrac{ { \beta }^{2} }{ \alpha }) {}^{ \dfrac{1}{3} }  \\  \\  \sf :  \implies \: \:  \frac{( { \alpha }^{3}) {}^{ \dfrac{1}{3} }  +  \: ( { \beta }^{3}) {}^{ \dfrac{1}{3} }   }{( \alpha  \beta ) {}^{ \dfrac{1}{3} } }  \\  \\ \sf :  \implies \: \:  \frac{ \alpha  +  \beta }{( \alpha  \beta ) {}^{ \dfrac{1}{3} } }

\sf :  \implies \: \:  \dfrac{ \dfrac{3}{8} }{( \frac{27}{8}) {}^{ \dfrac{1}{3} }  }  \\  \\ \sf :  \implies \: \:  \frac{ \frac{3}{8} }{( \frac{3}{2}) \dfrac{3}{3}  }  \implies \:  \frac{1}{4}  \:  =  \: answer

Answered by Anonymous
47

 \sf \underline{ \underline{\pink{   \mathfrak{Solution}}}}


 \sf \:  {8x}^{2}  - 3x + 27 = 0



 \sf \: so \: R =  \alpha +  \beta =  \frac{3}{8}



 \sf \: POR =  \alpha \beta =  \frac{27}{8}



 \large \sf \bigg(   {\frac{ { \alpha}^{2} }{ \beta}   \bigg)}^ { \frac{1}{3} }  +  \bigg( { \frac{ { \beta}^{2} }{ \alpha} \bigg) }^{ \frac{1}{3} }  =  \frac{ { \alpha}^{ \frac{1}{3} } }{ \beta \frac{ 1}{3} } \:   +  \:  \frac{ { \beta}^{ \frac{2}{3} } }{ { \alpha}^{ \frac{1}{3} } }



 \red{ \sf \large  \implies} \frac{  { \alpha}^{ \frac{2}{3} }  { \alpha}^{ \frac{1}{3} } +  { \beta}^{ \frac{2}{3} }  { \beta}^{ \frac{1}{3} }   }{  { \alpha}^{ \frac{1}{3} }  \:  \:   { \beta}^{ \frac{1}{3} } }



 \red{ \sf \large \implies} \:  \frac{ \alpha +  \beta}{( \alpha  \: \beta  {)}^{ \frac{1}{3} }  }  =  \frac{ \frac{3}{8} }{( \frac{27}{8}  {)}^{3} }




 \red{ \implies }\sf \large \:  \frac{ \frac{3}{8} }{ \frac{3}{2} }  =  \frac{1}{4}

Similar questions