If a, ß are the roots of the equation
x² + 3x + 2 = 0). Then alpha power 5 plus beta power 5 is with neat explanation
Answers
Answered by
1
Answer:
α⁵ + β⁵ = -33
Step-by-step explanation:
Let sₙ = αⁿ + βⁿ.
Then
- s₀ = α⁰ + β⁰ = 1 + 1 = 2
- s₁ = α + β = -3
Notice that the value of -3 for s₁ comes from the fact that
x² + 3x + 2 = (x - α)(x - β) = x² - (α + β)x + αβ.
Since α is a root of x² + 3x + 2 = 0,
- α² + 3α + 2 = 0 ⇒ α² = -3α - 2 ⇒ αⁿ⁺² = -3αⁿ⁺¹ - 2αⁿ.
Similarly
- βⁿ⁺² = -3βⁿ⁺¹ - 2βⁿ.
Adding these last two equations gives
- sₙ₊₂ = -3sₙ₊₁ - 2sₙ
This enables us to calculate s₂ from our knowledge of s₀ and s₁, and so on for s₃, s₄ and s₅. Doing this...
- s₂ = -3s₁ - 2s₀ = -3×-3 - 2×2 = 9 - 4 = 5
- s₃ = -3s₂ - 2s₁ = -3×5 - 2×-3 = -15 + 6 = -9
- s₄ = -3s₃ - 2s₂ = -3×-9 - 2×5 = 27 - 10 = 17
- s₅ = -3s₄ - 2s₃ = -3×17 - 2×-9 = -51 + 18 = -33
So s₅ = α⁵ + β⁵ = -33.
Similar questions