Math, asked by nag05, 2 months ago

If a, ß are the roots of x+2(a - 5)x +3 = 0. Find all values of a such that both 1 and 5 lie between
alpha and beta

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: \alpha , \beta  \: are \: roots \: of \:  {x}^{2} + 2(a - 5)x + 3 = 0

Now, we have to find value of 'a' such that both the roots lie in between 1 and 5.

We know,

Conditions for both the roots of the quadratic equation f(x) = ax² + bx + c = 0 to be lies between ( h, k ) are

1. a f( h ) > 0

2. a f( k ) > 0

3. h < x - coordinate of vertex ( -b / 2a ) < k

4. Discriminant > = 0

Now, According to given data, we have

  • h = 1

  • k = 5

  • a = 1

  • b = 2( a - 5 )

  • c = 3

Now,

We take first condition

\rm :\longmapsto\:af(h) &gt; 0

\rm :\longmapsto\:1 \times f(1) &gt; 0

\rm :\longmapsto\: f(1) &gt; 0

\rm :\longmapsto\: {1}^{2} + 2(a - 5)(1) + 3 &gt; 0

\rm :\longmapsto\: 1 + 2(a - 5)+ 3 &gt; 0

\rm :\longmapsto\: 4 + 2a - 10 &gt; 0

\rm :\longmapsto\:  2a - 6&gt; 0

\rm :\longmapsto\:  2a &gt; 6

\bf\implies \:a &gt; 3 -  -  - (1)

Now, we take second condition

\rm :\longmapsto\:af(k) &gt; 0

\rm :\longmapsto\:1 \times f(5) &gt; 0

\rm :\longmapsto\: f(5) &gt; 0

\rm :\longmapsto\: {5}^{2} + 2(a - 5)(5) + 3 &gt; 0

\rm :\longmapsto\: 25 + 10a - 50 + 3 &gt; 0

\rm :\longmapsto\: 10a - 22&gt; 0

\rm :\longmapsto\: 10a &gt; 22

\rm :\longmapsto\: 5a &gt; 11

\bf\implies \:a &gt; \dfrac{11}{5} -  -  - (2)

We take third condition

\rm :\longmapsto\:h &lt;  -  \: \dfrac{b}{2a} &lt; k

\rm :\longmapsto\:1 &lt;  -  \: \dfrac{2(a - 5)}{2} &lt; 5

\rm :\longmapsto\:1 &lt;  - a + 5&lt; 5

\rm :\longmapsto\:1 - 5&lt;  - a &lt; 5 - 5

\rm :\longmapsto\: - 4&lt;  - a &lt;  0

\bf :\longmapsto\:0&lt; a &lt; 4-  -  - (3)

We take fourth condition

\rm :\longmapsto\:Discriminant \geqslant 0

\rm :\longmapsto\: {4(a - 5)}^{2}  - 4 \times 3 \times 1 \geqslant 0

\rm :\longmapsto\: {(a - 5)}^{2}  - 3 \geqslant 0

\rm :\longmapsto\: {(a - 5)}^{2} \geqslant 3

\bf :\implies\:a \leqslant  -  \sqrt{3} + 5  \:  \: or \:  \:  a \geqslant  \sqrt{3} + 5  - -  - (4)

So, From equation (1), (2), (3) and (4), we concluded that

\rm :\longmapsto\: 3  &lt;  a  \leqslant 5 -  \sqrt{3}

Attachments:
Similar questions