Math, asked by pallapothurao7, 10 months ago

If a,ß are the roots of x² – 3x + a=0 and
y,d are the roots of x2 - 12x + b = 0 and
a,B,X,8 in that order from a geometric
progression in increasing order with common
ratio r > 1, then a+b

Answers

Answered by rishu6845
3

Answer:

a \:  +  \: b \:  =  \: 17 \: a

Step-by-step explanation:

Given--->

 \alpha  \: and \:  \beta  \: are \: the \:roots \: of \:

 {x}^{2}  \:  -  \: 3x \:  +  \: a \:  =  \: 0

and \:  \gamma  \: and \: d \: are \: zeroes \: of \:

 {x}^{2}  \:  - 12 \: x \:  +  \: b \:  =  \: 0

and \:  \alpha  \:  \beta  \:  \gamma  \: and \: d \: are \: in \: geometric \: progression

To find ---->

value \: of \: ( \: a \:  +  \: b \: )

Concept used ---->

1)

if \: a {x}^{2}  \:  +  \: bx \:  + c \:  = 0 \: is \: a \: quadratic \: equation \:

then

sum \: of \: zeroes \:   =  \:  -  \dfrac{b}{a}

product \: of \: zeroes \:  =  \:  \dfrac{c}{a}

2)

 { \: (a \:  -  \: b \: )}^{2}  \:  =  \: ( \: a \:  +  \: b \: ) ^{2}  \:  - 4 \: a \: b

3)

if \: a \: b \: c \: and \: d \: are \: in \: gp \: then

 \dfrac{b}{a} \:  =  \dfrac{d}{c}

Solution----> ATQ,

 {x}^{2}  \:  - 3 \: x \:  +  \: a \:  = 0

 \alpha  \:  +  \:  \beta  \:  =  -  \:  \dfrac{ - 3}{1}  =  \: 3

 \alpha  \:  \beta  \:  =  \dfrac{b}{1}  \:  =  \: b

 {x}^{2}  \:  -  \: 12 \: x \:  +  \: b \:  =  \: 0

 \gamma  \:  +  \: d \:  =  -  \dfrac{ - 12}{1}  = 12

 \gamma  \: d \:  =  \dfrac{b}{1}

now \:  \alpha  \:  \beta  \:  \gamma  \: and \: d \: are \: in \: gp \: so \:

 \dfrac{ \beta }{ \alpha } \:  =  \:  \dfrac{d}{ \gamma }

 =  >  \dfrac{ \alpha }{ \beta } \:  =  \dfrac{ \gamma }{d}

applying \: componendo \: and \: dividendo \: we \: get

  \dfrac{ \alpha  \:  +  \:  \beta }{ \alpha  \:  -  \:  \beta } \:  =  \dfrac{ \gamma  +  \: d}{ \gamma  \:  -  \: d}

squaring \: both \: sides \: we \: get

 \dfrac{ { ( \: \alpha  \:  +  \:  \beta \: ) }^{2} }{( \:  \alpha  \:  -  \:  \beta  )^{2} }  \:  =  \dfrac{( \:  \gamma  \:  + d \: )^{2} }{ {( \:  \gamma  \:  -  \: d \: )}^{2} }

 =  >  \dfrac{ {( \:  \alpha  \:  +  \:  \beta  \: )}^{2} }{( \:  \alpha  \:  +  \:  \beta )^{2} \:  -  \: 4 \alpha  \:  \beta  }  \:  =  \dfrac{( \:  \gamma  \:  +  \: d \: )^{2} }{ (\gamma  \:  +  \: d \: ) ^{2} \:  - 4 \:  \gamma  \: d }

 =  >  \dfrac{( \: 3 \:)  ^{2} }{( \: 3 \: )^{2} \:  - 4 \: a } \:  =  \dfrac{ {( \: 12 \: )}^{2} }{( \: 12 \: )^{2} \:  - 4 \: b }

 =  >  \dfrac{9}{9 \:  -  \: 4 \: a} \:  =  \dfrac{144}{144 \:  -  \: 4b}

 =  >  \dfrac{1}{9 \:  -  \: 4a} \:  =  \dfrac{16}{144 \:  - 4 \: b}

 =  > 144 \:  -  \: 4b \:  =  \: 16 \: ( \: 9 \:  -  \: 4a \: )

 =  > 144 \:   -  \: 4b \:  =  \: 144 \:  -  \: 64a

 =  >  - 4b \:  =  \:  - 64 \: a

 =  >  4b \:  =  \: 64a

 =  > b \:  =  \: 16 \: a

now

a \:  +  \: b \:  =  \: a \:  +  \: 16 \: a

a \:   +  \: b \:  = 17 \: a

Similar questions