Math, asked by SSRVESH25, 10 months ago

IF a,ß are the zeroes of the polynomials f (x)=x^2+x+1 ,then 1/a+1/ß​

Answers

Answered by Anonymous
15

{\underline{\sf{Question}}}

If alpha and beta are the zeroes of the polynomials f (x)=x^2+x+1 ,then 1/alpha+1/beta

{\underline{\sf{Theory}}}

If   \sf \alpha  \: and \:  \beta are zeroes of quadratic polynomial

 \sf \: f(x) =  {x}^{2}  + bx + c

Then , \sf \:  \alpha  +  \beta  =  \dfrac{ -  cofficient \: of \: x}{cofficient \: of \: x {}^{2} }

 \sf \: and \:  \alpha  \beta  =  \dfrac{constant}{cofficient \: of \: x {}^{2} }

{\underline{\sf{Solution}}}

 \sf \: f(x) = x {}^{2}  + x + 1

 \sf \:  \alpha  +  \beta  =  \dfrac{ -  cofficient \: of \: x}{cofficient \: of \: x {}^{2} }

  \implies \: \sf \:  \alpha  +  \beta  =  \frac{ - 1}{1}  =  - 1..(1)

and

 \sf \: and \:  \alpha  \beta  =  \dfrac{constant}{cofficient \: of \: x {}^{2} }

 \implies \: \sf \:  \alpha  \beta  =  \frac{1}{1}  = 1...(2)

We have to find the value of

 \sf \dfrac{1}{ \alpha }  +  \dfrac{1}{ \beta }

By taking L.C.M of dinominators

 \implies\sf \dfrac{1}{ \alpha }  +  \dfrac{1}{ \beta }  =  \dfrac{ \alpha  +  \beta }{ \alpha  \beta }

put the values of equation (1) and (2)

 \implies\dfrac{ \alpha  +  \beta }{ \alpha  \beta }  =  \dfrac{ - 1}{1} =  - 1

Similar questions