Math, asked by sayanbala, 1 month ago

if a area of a square is a² + b²/4 + c²/9 +ab+ b²/3 + 2/3ca, find the perimeter of the square.

pls give the correct answer whoever will answer it​

Answers

Answered by mathdude500
6

Appropriate Question :-

if a area of a square is a² + b²/4 + c²/9 +ab+ bc/3 + 2/3ca, find the perimeter of the square.

\large\underline{\sf{Given- }}

\rm \:Area_{square}  =  \: {a}^{2} + \dfrac{ {b}^{2} }{4}  + \dfrac{ {c}^{2} }{9}   + ab+ \dfrac{ {b}c }{3}  + \dfrac{2}{3} ca

\large\underline{\sf{To\:Find - }}

\boxed{ \rm{ Perimeter_{square}}}

\large\underline{\sf{Solution-}}

Given area of square

\rm \:  =  \:  \:  {a}^{2} + \dfrac{ {b}^{2} }{4}  + \dfrac{ {c}^{2} }{9}   + ab+ \dfrac{ {b}c }{3}  + \dfrac{2}{3} ca

can be rewritten as

\rm \:  =  \:  \:  {a}^{2} + \dfrac{ {b}^{2} }{ {2}^{2} }  + \dfrac{ {c}^{2} }{ {3}^{2} }   + ab+ \dfrac{ {b}c }{3}  + \dfrac{2}{3} ca

\rm \:  =  \:  \:  {a}^{2} +  {\bigg(\dfrac{b}{2} \bigg) }^{2} + {\bigg(\dfrac{c}{3} \bigg) }^{2} + 2 \times a \times \dfrac{b}{2} + 2 \times \dfrac{b}{2}  \times \dfrac{c}{2} + 2 \times a \times \dfrac{c}{3}

We know that

\boxed{ \rm{  {a}^{2}+{b}^{2}+{c}^{2} + 2ab + 2bc + 2ca =  {(a + b + c)}^{2}}}

So, using this identity, we get

\rm \:  =  \:  \: {\bigg(a + \dfrac{b}{2} +  \dfrac{c}{3}  \bigg) }^{2}

So, we get

\bf\implies \:Area_{square} =  {\bigg(a + \dfrac{b}{2} +  \dfrac{c}{3}  \bigg)}^{2}

We know that,

\boxed{ \bf{ Area_{square} =  {(side)}^{2}}}

So, we get

\rm :\longmapsto\: {(side)}^{2}  =  {\bigg(a + \dfrac{b}{2} +  \dfrac{c}{3}  \bigg)}^{2}

\bf\implies \:side = \bigg(a + \dfrac{b}{2} +  \dfrac{c}{3}  \bigg)

Now, we have to find the Perimeter of square.

We know that,

\red{\bf :\longmapsto\:Perimeter_{square} = 4 \times side}

So,

\rm :\longmapsto\:Perimeter_{square} = 4 \times \bigg(a + \dfrac{b}{2} +  \dfrac{c}{3}  \bigg)

\bf :\longmapsto\:Perimeter_{square} = 4a +2b +  \dfrac{4c}{3} \: units

Additional Information :-

\boxed{ \rm{ Area_{rectangle} = length \times breadth}}

\boxed{ \rm{ Perimeter_{rectangle} =2( length  +  breadth)}}

\boxed{ \rm{ Area_{rhombus} = base \times height}}

\boxed{ \rm{ Area_{parallelogram} = base \times height}}

\boxed{ \rm{ Area_{circle} = \pi \:  {r}^{2}}}

\boxed{ \rm{ Perimeter_{circle} =2 \:  \pi \:  {r}}}

Similar questions