Math, asked by Anonymous, 4 months ago

If a-b= 1, a²+b² = 13 find ab

Answers

Answered by Anonymous
2

ANSWERGiven, a + b = 5 and a 2 +b 2 =13On squaring a + b = 5 both sides, we get(a+b) 2 =(5) 2 a 2 +b 2 +2ab=2513+2ab=25⇒2ab=25−13=12⇒ab=12/2=6∴ab=6

Answered by jaswasri2006
21

Solution :

a - b = 1 \\  \\ a = 1 + b \:  \:  \:  \:  \: .....(1) \\  \\

now \: substitute \: eq \: 1 \:  \: in \:  {a}^{2}  +   {b}^{2}  = 13 \\  \\

 {(1 + b)}^{2} +  {b}^{2}  = 13 \\  \\

1 +  {b}^{2}  +  {b}^{2}  = 13 \\  \\

2 {b}^{2}  = 13  - 1 \\  \\

2 {b}^{2}  = 12 \\  \\

 {b}^{2}  =  \frac{12}{2}  \\  \\

 {b}^{2}  = 6 \\  \\

b =  \sqrt{6}  \\  \\

a = 1 +  \sqrt{6}  = 1 \sqrt{6}  \\  \\

ab =  \sqrt{6}  \times 1 \sqrt{6}  = 3.83 \\  \\

Similar questions