If a+b=1, a2+b2=2 and a3+b3=7, find a5+b5=?
Answers
Answered by
2
Given:
a + b = 1, a2 + b2 = 2 and a3 + b3 = 7
To find:
Find a5 + b5 = ?
Solution:
From given, we have,
a + b = 1, a2 + b2 = 2 and a3 + b3 = 7
Use the formula, (a + b)² = a² + b² + 2ab
so, we have, (1²) = 2 + 2ab
1 - 2 = 2ab
-1 = 2 ab
∴ ab = -1/2
(a + b)⁵ = a⁵ + b⁵ + 5a⁴b + 5ab⁴ + 10a³b² + 10a²b³
⇒ (a + b)⁵ = a⁵ + b⁵ + 5ab (a³ + b³) + 10a²b² (a + b)
⇒ (1)⁵ = a⁵ + b⁵ + 5 (-1/2) (7) + 10 (-1/2)² (1)
⇒ 1 = a⁵ + b⁵ - 35/2 + 10/4
⇒ a⁵ + b⁵ = 1 + 35/2 - 10/4
⇒ a⁵ + b⁵ = 1 + 35/2 - 5/2
⇒ a⁵ + b⁵ = 1 + 30/2
⇒ a⁵ + b⁵ = 32/2
∴ a⁵ + b⁵ = 16
Answered by
0
Given:
To find:
Solution:
let,
Formula:
solve the equation (iii):
square the equation (ii) and put the value of ab:
apply formula:
The final value of
Similar questions