Math, asked by manjubhatia9888, 6 months ago

If a-b=-10; ab = 16; find a³- b³​

Answers

Answered by Anonymous
1

Answer:

- 1480

Step-by-step explanation:

Given,

a - b = - 10

ab = 16

To find : a^3 - b^3 = ?

a^3 - b^3 = ( a - b )^3 + 3 ab ( a - b )

               = ( - 10 )^3 + 3 ( 16 ) ( - 10 )

               = - 1000 + 48 ( - 10 )

               = - 1000 - 480

a^3 - b^3 = - 1480

Answered by AestheticSoul
14

Given -

  • a - b = - 10
  • ab = 16

To find -

  • a³- b³

Solution -

By using this identity -

\LARGE{\boxed{\sf{\red{(a - b)^3 = a^3 - b^3 - 3ab(a - b)}}}}

Substitute the given values.

 =  \sf{(a - b)^3 = a^3 - b^3 - 3ab(a - b)}

 =  \sf{( - 10)^3 = a^3 - b^3 - 3 \times 16( - 10)}

 =  \sf{- 1000 = a^3 - b^3 -48( - 10)}

 =  \sf{- 1000 = a^3 - b^3  + 480)}

 =  \sf{- 1000  - 480= a^3 - b^3}

 =  \sf{- 1480= a^3 - b^3}

  • a³- b³ = - 1480

━━━━━━━━━━━

Know more -

Some useful identities -

  • \sf\green{{(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab}
  • \sf\green{{(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab}
  • \sf\green{(a + b)^3 = a^3 + b^3 + 3ab(a + b)}

Signs are changed on the following bases -

  • (-) (-) = (+)
  • (+) (+) = (+)
  • (-) (+) = (-)
  • (+) (-) = (-)
Similar questions