Math, asked by Anonymous, 5 months ago

if a+b=10 and a^2+b^2=58.find a^3+b^3 solve with steps​

Answers

Answered by rosslynmunoz
0

Answer:So the answer is Given a+b =10

so  (a+b)

2

=a

2

+b

2

+2ab

10

2

=58+2ab

∴2ab=100−58=42

∴ab=21

(a+b)

3

=a

3

+b

3

+3ab(a+b)

10

3

=a

3

+b

3

+3×21×10

∴a

3

+b

3

=1000−630=370

Step-by-step explanation:

Answered by Anonymous
19

Answer:

Given:

a + b = 10 and

 {a}^{2}  + b {}^{2}  = 58

To find:

 {a}^{3}  + b {}^{3}

Solution:

 {a}^{3}  +  {b}^{3}  = (a + b)( {a}^{2}  - ab +  {b}^{2} )

 = (10)( {a}^{2}  +  {b}^{2}  - ab) \\  \\  = (10)(58 - ab)

In order to find ab

 ({a}^{2}  + b {}^{2} ) =  {a}^{2}  + 2ab +  {b}^{2}

\Longrightarrow2ab =  {a}^{2}  + b {}^{2}  \\  \\ \Longrightarrow2ab = 100 - 58 = 42

Thus, ab = 21

So, (10)(58 – ab) = 10(58 – 21)

= 10 × 37

= 370

Hence, a^3 + b^3 = 370.

Some algebraic identities:

→ (a + b)^2 = a^2 + 2ab + b^2

→ (a – b)^2 = a^2 – 2ab + b^2

→ a^2 – b^2 = (a + b) (a – b)

→ (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca

→ (a + b – c)^2 = a^2 + b^2 + c^2 + 2ab – 2bc – 2ca

→ (a – b – c)^2 = a^2 + b^2 + c^2 – 2ab + 2bc – 2ca

→ (a + b)^3 = a^3 + b^3 + 3ab(a + b)

→ (a – b)^3 = a^3 – b^3 – 3ab(a – b)

→ (a^3 + b^3) = (a + b) (a^2 – ab + b^2)

→ (a^3 – b^3) = (a – b) (a^2 + ab + b^2)

Similar questions