Math, asked by VedantThard, 8 months ago

If a + b = 10 and a2 + 12 = 58, find the value of a3 + b3.

Answers

Answered by Anonymous
1

Answer:

Pls mark me as brainliest

Step-by-step explanation:

a + b = 10

SOBS

a² + b² + 2ab = 100

58 + 2ab = 100

2ab = 42

ab = 21

a³ + b³ = (a + b)(a² + b² - ab)

a³ + b³ = 10 × (58 - 21)

a³ + b³ = 370

Answered by shashiawasthi069
1

Step-by-step explanation:

a + b = 10

+ b2 = 58

a3+ b3 = ?

(a+b)^2 = a^2+b^2+2ab

( 10 )^2 = 58+2ab

100-58 = 2ab

42 = 2ab

ab = 21

(a+b)^3 = a^3+b^3+3ab(a+b)

a^3+b^3 = (a+b)^3 - 3ab(a+b)

a^3+b^3 = (10)^3 - 3×21× 10

a^3+b^3 = 1000 - 630

a^3+b^3 = 370

Similar questions