Math, asked by ukiller023, 1 month ago

If a + b=10 and a2 + b 2 =58 find the value of a3 + b 3​

Answers

Answered by SuperSuryanshu
0

Answer:

answer is 370 please brainlist me

Answered by mathdude500
0

\large\underline{\sf{Given- }}

\rm :\longmapsto\:a + b = 10

and

\rm :\longmapsto\: {a}^{2} +  {b}^{2} = 58

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\: {a}^{3} +  {b}^{3}

 \red{\large\underline{\sf{Solution-}}}

Given that

\rm :\longmapsto\: {a}^{2} +  {b}^{2} = 58

and

\rm :\longmapsto\:a + b = 10

On squaring both sides, we get

\rm :\longmapsto\: {(a + b)}^{2}  =  {10}^{2}

\rm :\longmapsto\: {a}^{2} +  {b}^{2} + 2ab = 100

\rm :\longmapsto\:58 + 2ab = 100

\rm :\longmapsto\:2ab = 100 - 58

\rm :\longmapsto\:2ab = 42

 \red{\rm :\longmapsto\:ab = 21}

Now, again

\rm :\longmapsto\:a + b = 10

On cubing both sides, we get

\rm :\longmapsto\: {(a + b)}^{3} =  {10}^{3}

\rm :\longmapsto\: {a}^{3} +  {b}^{3} + 3ab(a + b) = 1000

\rm :\longmapsto\: {a}^{3} +  {b}^{3} + 3 \times 21 \times 10 = 1000

\red{\bigg \{ \because \:a + b = 10 \:  \: and \:  \:  \: ab = 21 \bigg \}}

\rm :\longmapsto\: {a}^{3} +  {b}^{3} + 630 = 1000

\rm :\longmapsto\: {a}^{3} +  {b}^{3} = 1000 - 630

\rm :\longmapsto\: {a}^{3} +  {b}^{3} = 370

Additional Information :-

 \boxed{ \bf{ \:  {(a + b)}^{2} =  {a}^{2}  +  {b}^{2}  + 2ab}}

 \boxed{ \bf{ \:  {(a - b)}^{2} =  {a}^{2}  +  {b}^{2}   -  2ab}}

 \boxed{ \bf{ \:  {(a + b)}^{3} =  {a}^{3}  +  {b}^{3}  + 3ab(a + b)}}

 \boxed{ \bf{ \:  {(a  -  b)}^{3} =  {a}^{3}   -   {b}^{3}   -  3ab(a  -  b)}}

 \boxed{ \bf{ \:  {a}^{2} -  {b}^{2} = (a + b)(a - b)}}

 \boxed{ \bf{ \:  {a}^{3} +  {b}^{3} = (a + b)( {a}^{2} - ab +  {b}^{2})}}

 \boxed{ \bf{ \:  {a}^{3} - {b}^{3} = (a  -  b)( {a}^{2}  + ab +  {b}^{2})}}

 \boxed{ \bf{ \:  {a}^{4} -  {b}^{4} = (a - b)(a + b)( {a}^{2} -  {b}^{2})}}

Similar questions