if a+b=10 and a²+b²=58,find the value of a³+b³
Answers
Answered by
1
a³+ b³ = a³+3a²b+3ab²+b³
madanmohan1:
a^3+b^3 ki identity galat hai
Answered by
10
We have given that
a+b=10 and a^2+b^2=58
a^2+b^2+2ab=100
58+2ab=100 (a^2+b^2=58)
2ab=100-58
2ab=42
ab=21
now according to the question,
a^3+b^3=(a+b)(a^2+b^2+2ab)
= (10)(58-21)
=(10)(37)
=370
a+b=10 and a^2+b^2=58
a^2+b^2+2ab=100
58+2ab=100 (a^2+b^2=58)
2ab=100-58
2ab=42
ab=21
now according to the question,
a^3+b^3=(a+b)(a^2+b^2+2ab)
= (10)(58-21)
=(10)(37)
=370
Similar questions