If a+b=10 and a²+b²=58 find the value of a³+b³
Answers
Answered by
1
a^2 +b^2 = 58 ------(1)
a + b = 10
On squaring both sides, we get
a^2 + b^2 + 2ab = 100
=> 58 + 2ab = 100
=> 2ab = 42
=> ab = 21 ------(2)
Now,
a^3 + b^3 = ( a + b ) (a^2 + b^2 - ab)
= ( 10) ( 58 - 21)
= 10 × 37
= 370
a + b = 10
On squaring both sides, we get
a^2 + b^2 + 2ab = 100
=> 58 + 2ab = 100
=> 2ab = 42
=> ab = 21 ------(2)
Now,
a^3 + b^3 = ( a + b ) (a^2 + b^2 - ab)
= ( 10) ( 58 - 21)
= 10 × 37
= 370
Answered by
0
a^2 +b^2 = 58
a + b = 10
a^2 + b^2 + 2ab = 100
=> 58 + 2ab = 100
=> 2ab = 42
=> ab = 21
a^3 + b^3 = ( a + b ) (a^2 + b^2 - ab)
= ( 10) ( 58 - 21)
= 10 × 37
= 370
Similar questions