if a+b=10 and a2+b2=58 (square) find a3+b3(cube)
Answers
Answered by
6
(a+b)3=a3+b3+3ab(a+b)=(10)3------------------------(1)
(a+b)2=a2+b2+2ab=100----------------------(2)
58+2ab=100
2ab=42
ab=21---------------------(4)
from 1 eqn
a3+b3+3(21) (10)=1000-------------------------(From eqn 1 and 4)
a3+b3=1000-630
a3+b3=370
(a+b)2=a2+b2+2ab=100----------------------(2)
58+2ab=100
2ab=42
ab=21---------------------(4)
from 1 eqn
a3+b3+3(21) (10)=1000-------------------------(From eqn 1 and 4)
a3+b3=1000-630
a3+b3=370
Answered by
6
a + b = 10
a = b-10 .........1 )
Now,
a² + b² = 58
(b-10)² + b² = 58
b² + 100 - 20b + b² = 58
2b² - 20b + 42 = 0
2b² - 14b -6b +42=0
2b(b-7) -6(b-7)
(b - 7) (2b - 6)
So,
b = 7 ; 3
Now,
a³ + b³ :-
1 ) 7³+3³
= 370 ...............★ ANS ★
________☺☺☺_______
a = b-10 .........1 )
Now,
a² + b² = 58
(b-10)² + b² = 58
b² + 100 - 20b + b² = 58
2b² - 20b + 42 = 0
2b² - 14b -6b +42=0
2b(b-7) -6(b-7)
(b - 7) (2b - 6)
So,
b = 7 ; 3
Now,
a³ + b³ :-
1 ) 7³+3³
= 370 ...............★ ANS ★
________☺☺☺_______
HridayAg0102:
hope it helps☺
Similar questions