Math, asked by RomanReings15, 1 year ago

if a+b=10 and a2 +b2 =58 then the value of a3+b3 is

Answers

Answered by UdayMehtani1
149
a+b=10
cubing both the sides
(A+b)3= A3+b3+3ab(a+b)=1000

A2+b2=58

(a+b)=10
sqauring both the sides
A2+b2+2ab=100
58+2ab=100
2ab=42
ab=21

(A+b)3= A3+b3+3ab(a+b)
A3+b3+3(21)(10)=1000
A3+b3=1000-630
A3+b3=370
answer is 370

brainliest answer pls pls pls...

UdayMehtani1: sorry its 370
vickybatra: correct it
UdayMehtani1: done
Answered by PravinRatta
26

Given,

a+b =10, a^{2} +b^{2} = 58,

To find,

a^{3} +b^{3}

Solution,

Applying the sum of squares formula, that is,

(a+b)^2 = a^2+ b^2+2ab , ------(i)

Now,

a+b=10, a^{2} +b^{2} = 58,

Substituting these values in (i),

10^2 = 58 + 2ab,

2ab = 100-58,

ab = \frac{42}{2} ,

⇒ ab =21.

Now applying another formula,

(a+b)^3 = a^3+b^3 + 3ab(a+b),

Again substituting values of a+b = 10 and ab = 21,

we get,

10^3 = a^3+b^3+ 3(21)(10),

1000 = a^3 + b^3 +630,

⇒  a^3+b^3 = 1000-630,

a^3+b^3= 370.

Similar questions