if a+b=10 and ab=15 find the value of a^3 + b^3 ....
class 9 chapter polynomials.
Answers
Answered by
1
Answer:
550
Step-by-step explanation:
a+b=10
ab=15
a^3+b^3={(a+b)^3} -3ab(a+b)
={(10)^3}-3(15)(10)
=1000-450
=550
Answered by
0
Answer:
solution:-
Given,
a+b=10 and ab=15
Squaring both sides,we get,
(a+b)2=72
=a2+b2+2ab=49 [since(a+b)2=a2+b2+2ab]
=a2+b2+2(15)=49
=a2+b2=49−30
=a2+b2=19
Now,
(a3+b3)
=(a+b)(a2+b2−ab)
=7(19−15)
=7(4)
=550
Similar questions