if a+b=10 and ab=16, find the value of a2-ab+b2 and a2+ab+b2 .
Attachments:
Answers
Answered by
475
Solution :-
Given : a + b = 10 ............(1)
and ab = 16 .....................(2)
It is known that,
(a + b)² = a² + 2ab + b²
Now, substituting the values of (1) and (2) in the above, we get.
⇒ (10)² = a² + 2*(16) + b²
⇒ 100 = a² + 32 + b²
⇒ a² + b² = 100 - 32
⇒ a² + b² = 68 .................(3)
Now, substituting the value of a² + b² = 68 in a² - ab + b²
⇒ 68 - 16 (as ab = 16)
⇒ 52
And, substituting the value of a² + b² = 68 in a² + ab + b²
⇒ 68 + 16
⇒ 84
Answer.
Given : a + b = 10 ............(1)
and ab = 16 .....................(2)
It is known that,
(a + b)² = a² + 2ab + b²
Now, substituting the values of (1) and (2) in the above, we get.
⇒ (10)² = a² + 2*(16) + b²
⇒ 100 = a² + 32 + b²
⇒ a² + b² = 100 - 32
⇒ a² + b² = 68 .................(3)
Now, substituting the value of a² + b² = 68 in a² - ab + b²
⇒ 68 - 16 (as ab = 16)
⇒ 52
And, substituting the value of a² + b² = 68 in a² + ab + b²
⇒ 68 + 16
⇒ 84
Answer.
Answered by
36
a square+ab+b square
use identity
(a+b)square =a square+2×16+b square
(10) square =a square +32+b square
100-32=a square+b square
68=a square +b square
a square-ab+b square
use identity
(a-b)square =a square-16+b square
(a-b)square =a square +b square-16
(a-b)square =68-16
(a-b)square =52
a square+ab+b square
68+16
84 answer
Similar questions