if a+b=10 and ab=16,find the value of the value of a^2-ab+b^2 and a^2+ab+b^2
Attachments:
hitesh7747:
64-16+4=52
Answers
Answered by
6
(a+b)^2=100
a^2+2ab+b^2=100
a^2+b^2=100-2(16)
a^2+b^2=62
Therefore,
a^2+ab+b^2=a^2+b^2+ab=62+16=78
a^2+b^2-ab=62-16=46
Hope it will help u.
Mark me as Brainliest.
a^2+2ab+b^2=100
a^2+b^2=100-2(16)
a^2+b^2=62
Therefore,
a^2+ab+b^2=a^2+b^2+ab=62+16=78
a^2+b^2-ab=62-16=46
Hope it will help u.
Mark me as Brainliest.
Answered by
8
Answer:
Given,⇒a+b=10⇒ab=16⇒(a+b) 2 =a 2 +b 2 +2ab⇒10 2 =a 2 +b 2 +2(16)∴a 2 +b 2 =68⇒a 2 +b 2 +ab=68+16=84⇒a 2 +b 2
Given,⇒a+b=10⇒ab=16⇒(a+b) 2 =a 2 +b 2 +2ab⇒10 2 =a 2 +b 2 +2(16)∴a 2 +b 2 =68⇒a 2 +b 2 +ab=68+16=84⇒a 2 +b 2 −ab=68−16=52
plz mark my answer as a brainliest answer
Attachments:
Similar questions