If a + b = 10 and ab = 20 then the value of a3 + b3
is
1) 400
2) 470
3) 570
Answers
Answered by
56
Answer: 400
EXPLANATION :
Given,
=> a + b = 10
=> ab = 20
To find the value of a³ + b³
We know that,
a³ + b³ = (a + b)³ - 3ab (a + b)
Substitute the values
a³ + b³ = (10)³ - 3(20) [ 10 ]
= 1000 - 600
= 400
Therefore, the value of a³ + b³ is 400.
Answered by
49
Given :
a+b = 10
ab = 20
To Find :
a³+b³
Solution :
a³+b³ = (a+b)³ -3ab(a+b)
Putting the values in the above expression :
a³+b³ = (10)³ -3(20)[10]
= 1000 -60(10) => 1000-600
= 400
The required value is 400.
Here we used the identity :
(a+b)³ = a³+b³+3ab(a+b)
=> à³+b³= (a+b)³-3ab(a+b)
Similar questions
Political Science,
6 months ago
English,
6 months ago
Math,
1 year ago
Accountancy,
1 year ago
Social Sciences,
1 year ago
Chemistry,
1 year ago