Math, asked by clarebearlhw, 11 months ago


If a+b=10 and ab=3, find the value of a^3​+2a​^2b+ab^2+100b

Answers

Answered by sanjeevk28012
0

Given :

a + b = 10

ab = 3

To Find :

The value of a³ + 2 a² b + a b² + 100 b

Solutions :

( a - b )²  = ( a + b )² - 4 a b

              = ( 10 )² - 4 × 3

              = 100 - 12 = 88

a - b = 2 √22              .........2

a + b = 10   .................1

Solving eq 1 and 2

( a + b ) + ( a - b ) = 10 +  2 √22

Or,  ( a + a ) + ( b - b ) = 10 + 2 √22

Or,                        2 a =  10 + 2 √22

∴                              a =  5 +√22

Put the value of a into eq 1

5 +√22 + b = 10

Or,     b = 10 - 5 -√22

∴        b = 5 - √22

Now,

Put the value of a and b into given equation a³ + 2 a² b + a b² + 100 b

i.e   a³ + 2 a² b + a b² + 100 b =  a² (a + 2 b) + b ( a b + 100)

 = [ (  5 +√22 )² { (  5 +√22) + 2 (  5 -√22 )} ] + [  5 -√22 { ( 5 +√22) ( 5 -√22) + 100 } ]

=  [ (  25 + 22 + 10√22) { (  5 +√22) + ( 10 -2√22 )} ] + [  5 -√22 { ( 25 - 22)  + 100 } ]

= [( 47 + 10√22)   (15 -√22) ] + [(  5 -√22 ) { ( 3 ) + 100} ]

= [ 705 - 47√22 + 150 √22 - 220 ] + [  15 - 3 √22+ 500 - 100√22 ]

= 485 + 103  √22  + 515 - 103 √22

= ( 485 + 515 ) + (  103  √22 -  103  √22 )

= 1000 + 0

= 1000

Hence, The value of expression a³ + 2 a² b + a b² + 100 b is  1000  Answer

Similar questions