Math, asked by oreo1234567, 1 month ago

if a+b=10 and ab = 6 evaluate a³+b³​

Answers

Answered by shivankg2004
1

Answer:

a^{3}+ b^{3}=820

Step-by-step explanation:

(a+b)^{2} = a^{2} +b ^{2} +2ab\\(10)^{2} = a^{2} +b ^{2} +2(6)\\100-12 = a^{2} +b ^{2} \\.:a^{2} +b ^{2}=88\\

We know that,   a^{3}+ b^{3}=(a+b)( a^{2}+b^{2} -ab)

a^{3}+ b^{3}=(a+b)( a^{2}+b^{2} -ab)\\a^{3}+ b^{3}=(10)(88 -6)\\a^{3}+ b^{3}=(10)(82)\\.:a^{3}+ b^{3}=820

Pls mark the answer as  Brainliest

: )

Answered by alagappanrm08
0

Answer:

-740

Step-by-step explanation:

a+b=10

ab=6

a*a*a+b*b*b= -740

(a+b)³=a³+b³+3ab(a+b)

(10)³= a³+b³+3×58(10)

1000= a³+b³+1740

1000-1740=a³+b³

a³+b³=-740

please mark me as a brainliest

Similar questions