Math, asked by keerthikrishnackm, 9 months ago

if a+b=11 and a2+b2=65 find a3+b3​

Answers

Answered by Uriyella
24

ANSWER :–

  • The value of  \sf {a}^{3} + {b}^{3} = 407

GIVEN :–

  • a + b = 11.
  • a² + b² = 65.

TO FIND :–

  •  \sf {a}^{3} + {b}^{3}

SOLUTION :–

Identity used,

 \mapsto {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

And here we have,

  • a + b = 11.
  • a² + b² = 65.

Now, substitute the given values in the identity.

\longmapsto{(11)}^{2}  = 65 + 2ab

\longmapsto121 - 65 = 2ab

\longmapsto56 = 2ab

\longmapsto\cancel \dfrac{56}{2}  = ab

\longmapsto 28 = ab

We get,

  • ab = 28.

Now,

 \mapsto {a}^{3}  +  {b}^{3}  = (a + b)( {a}^{2}  +  {b}^{2}  - ab)

Now we have,

  • a + b = 11.
  • a² + b² = 65.
  • ab = 28.

 \longmapsto {a}^{3}  +  {b}^{3}  = (11)(65 - 28)

\longmapsto{a}^{3}  +  {b}^{3}  = 11 \times 37

\longmapsto{a}^{3}  +  {b}^{3}  = 407

Hence,

The value of  \sf {a}^{3} + {b}^{3} is 407.

Answered by RITESHPRATHIPATI
3

Answer:

1331

Step-by-step explanation:

a+b=11

A^2 +B^2 = 65

To get 11 we have so many options but here we will take it as 7+4 because 7^2 + 4^2 = 65

So A=7,,B=4

Therefore (a+b)^3= a^3 + b^3 + 3a^2b+ 3ab^2

After entering the values,,

(a+b)^3= 7^3 + 4^3 + 3 * 7^2 * 4 + 3 * 7 * 4^2

          = 343 + 64 + 588 + 336

          = 1331

Similar questions