If a+b=11 and ab=28, find a-b using appropriate identities
Answers
Answered by
3
a+b = 11
Square the equation,
(a+b)^2 = (11)^2 = 121
=> a^2 + b^2 +2ab = 121
=> a^2 + b^2 = 121 - 2ab
= 121 - 56
=> a^2 + b^2 = 65 .................(a)
and,
ab = 28
Multiply the equation by 2,
2ab = 2(28) = 56 ......................(b)
Also,
(a-b)^2 = a^2 + b^2 - 2ab
= 65 - 56.....................(from (a) and (b))
(a-b)^2 = 9
Square root the above equation,
=> a - b = 3
Hence, the required value of (a-b) is 3.
Answered by
3
Answer :-
(a + b) ² = a² + b² + 2ab
(11)² = a² + b² + 2(28) {ab = 28, a + b = 11}
121 - 56 = a² + b²
a² + b² = 65
(a - b) ² = a² + b² - 2ab
(a - b)² = 65 - 2(28) {a² + b² = 65, ab = 28}
(a - b)² = 65 - 56
(a - b)² = 9
(a - b) = 3
Hence, (a - b) = 3
Similar questions