Math, asked by sravanthi92, 10 months ago

If a + b = 11 and ab = 30, then find the value of (a - b)​

Answers

Answered by Mannat1012
2

ab = 30

a = 30/b ----------(1)

a + b = 11

30/b + b = 11

30 + b² = 11b

b²-11b + 30 = 0

b² - 6b - 5b + 30 = 0

b(b-6) - 5(b-6) = 0

b= 6 , b = 5

Hope it helps...

pls mark it the brainliest

Answered by sg2544
3

Hello mate....

given.....

a+b=11........eqn1

ab=30.......eqn2

from eqn1 => a=11-b

"a" value sub in eqn 2

then》

=> (11-b)b=30

 =  > 11b - b {}^{2}  = 30

b {}^{2}  -  11b + 30 = 0 \\  \\ b {}^{2}  - 6b - 5b + 30 = 0 \\  \\ b(b - 6) - 5(b - 6) = 0 \\  \\ (b - 5)(b - 6) = 0 \\  \\ b = 5or6 \\  \\ when \: b = 5 \: in \: eqn1 =  >  \\  \\ a + 5 = 11 \\  \\ a = 6 \\  \\ when \: b = 6 \: in \: eqn1 =  >  \\  \\ a + 6 = 11 \\  \\ a = 5 \\  \\

soo 》when the value of a=5 then value of b =6

》when the value of a=6 then value of b=5

from qs》a-b=?

1st step》taking a=5,b=6

a-b=5-6=-1

2nd step》taking a=6,b=5

a-b=6-5=1

HOPE IT HELPS YOU.....♧♧♧

Similar questions