Math, asked by SUN100, 1 year ago

if a+b=12, ab=4, find a-b​

Answers

Answered by Anonymous
5

Answer :-

The value of a - b is 8√2.

Solution :-

We know that

(a - b)² = (a + b)² - 4ab

Here

• a + b = 12

• ab = 4

By substituting the values

⇒ (a - b)² = 12² - 4(4)

⇒ (a - b)² = 144 - 16

⇒ (a - b)² = 128

⇒ a - b = √128

⇒ a - b = √64 * √2

⇒ a - b = 8 * √2

⇒ a - b = 8√2

Another way of solving

We know that

(a + b)² = a² + b² + 2ab

Here

• a + b = 12

• ab = 4

By substituting the values

⇒ 12² = a² + b² + 2(4)

⇒ 144 = a² + b² + 8

⇒ 144 - 8 = a² + b²

⇒ a² + b² = 136

We know that

(a - b)² = a² + b² - 2ab

Here

• a² + b² = 136

• ab = 4

By substituting the values

⇒ (a - b)² = 136 - 2(4)

⇒ (a - b)² = 136 - 8

⇒ (a - b)² = 128

⇒ a - b = √128

⇒ a - b = √64 * √2

⇒ a - b = 8 * √2

⇒ a - b = 8√2

Therefore the value of a - b is 8√2.

Answered by BrainlyElegantdoll
3

Question :

If a+ b = 12 ,ab = 4 , Find a - b

Answer :

The value of a - b = 8√2

Solution :

W . K .T , (a + b)² = + + 2ab

[Substituting the values ]

 {(12)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2(4)

144 =  {a}^{2}  +  {b}^{2}  + 8

144 - 8 =  {a}^{2}   +  {b}^{2}

136 =  {a}^{2}  +  {b}^{2}

Now ,

As we know ,

 {(a  - b)}^{2}  =  {a}^{2}   + {b}^{2} - 2ab

[Substituting the values ]

 {(a - b)}^{2}  = 136 - 2(4)

 {(a - b)}^{2}  = 136 - 8

 {(a - b)}^{2}  = 128

 a  - b =  \sqrt{128}

a - b  =  \sqrt{64}  \times  \sqrt{2}

a - b = 8 \sqrt{2}

Therefore , the value of a - b = 8√2

Similar questions