if a+b=12, an ab=32 find the value of a²+b²
Answers
Answered by
4
we know that,
a²+b²= (a+b)²-2ab
let's prove this identity,
RHS
= (a+b)²-2ab
= a²+b²+2ab-2ab
= a²+b²= LHS
Hence proved//
now,
substituting the given values , we have,
12²-2 x 32
= 144-64
= 80
___________________
a²+b²= (a+b)²-2ab
let's prove this identity,
RHS
= (a+b)²-2ab
= a²+b²+2ab-2ab
= a²+b²= LHS
Hence proved//
now,
substituting the given values , we have,
12²-2 x 32
= 144-64
= 80
___________________
Answered by
1
(a+b)²=12² (because a+b=12)
(a+b)²=a²+2ab+b²
(a+b)²=144
144=a²+b²+2ab
144=a²+b²+2×32
144-64=a²+b²
a²+b²=80
(a+b)²=a²+2ab+b²
(a+b)²=144
144=a²+b²+2ab
144=a²+b²+2×32
144-64=a²+b²
a²+b²=80
Similar questions