If a + b= 12 and a b= 27, find the value of a 3 +b 3
Answers
Answered by
1
Given:
a+b = 12
ab = 27
To find:
The value of a³ + b³
Solution:
We know that
a³ + b³ = (a + b)(a² +b² -ab)
Also,
(a + b)²= a² +b² + 2ab
=> a²+ b² = (a + b)²- 2ab
Now putting the value of a² + b²
We get,
a³ + b³ = (a+b){ [ (a+b)²-2ab ] -ab }
=> a³ + b³ = (a+b)[ (a+b)²-3ab ]
Putting the values
a³ + b³ = (12)[ (12)² - 3(27) ]
=> 12 (144 - 3×27)
=> 12 (144 - 81)
=> 12 × 63
=> 756
Hence, a³ + b³ = 756
Similar questions