If a+b=12 and ab=27 then the value of a³+b³
Answers
Answered by
3
Answer:
756
Step-by-step explanation:
a³+b³ = (a+b)³ - 3ab(a+b)
given a+b=12; ab=27, we have
a³+b³ =12³ - 3(27)(12)
= 12(12²-3(27))
= 12(144-81)
= 12(63)
= 756
Answered by
20
Given :-
- a + b = 12
- ab = 27
To find :-
- a³ + b³
Solution :-
- a + b = 12
- ab = 27
Cube both side
→ (a + b)³ = (12)³
- Apply identity
- (a + b)³ = a³ + b³ + 3ab(a + b)
→ a³ + b³ + 3ab(a + b) = 1728
- Put the values
→ a³ + b³ + 3 × 27 × 12 = 1728
→ a³ + b³ + 972 = 1728
→ a³ + b³ = 1728 - 972
→ a³ + b³ = 756
Hence,
- The value of a³ + b³ is 756
More to know :-
- (a - b)² = a² + b² - 2ab
- (a + b)² = a² + b² + 2ab
- a² - b² = (a + b)(a - b)
Similar questions