if [a-b]=135 show that [1-tan a][1+tan b]=2
Answers
Answered by
0
Answer:
a-b=135
a=135+b
LHS=(1-tana)×(1+tanb)
=(1-tan(135+b))×(1+tanb)
=(1-tan(90+45+b))×(1+tanb)
=(1-tan(90+(45+b)))×(1+tanb)
=(1+cot(45+b))×(1+tanb)
=(1+1/tan(45+b))×(1+tanb)
=(1+(1-tan45.tanb)/(tan45+tanb))×(1+tanb)
now put tan45=1 and do simplification you will be left with 1+1=2
tan45+tanb))×(1+tanb)
Similar questions