If A+B=135° then prove (1+tanA)(1+tanB)=2tanA×tanB
Answers
Answered by
4
Heya
Formula
Tan ( A + B ) ={ Tan A + Tan B }/1- Tan A × Tan B
=>
Tan A + Tan B = Tan ( A + B ) × { 1 - Tan A × Tan B }
=>
Tan A + Tan B = Tan (135° ) × { 1 - Tan A × Tan ( B )
=>
Tan A + Tan B = Tan A × Tan B - 1
Becoz Tan ( 135 ) = -1
=>
Now in our question.
L.H.S
( 1 + Tan A ) × ( 1 + Tan B ) =
1 + Tan A × Tan B + Tan A + Tan B
=>
1 +Tan A × Tan B + Tan A × Tan B - 1
= 2 Tan A × Tan B
HENCE, proved.
Similar questions