Math, asked by techgaming245, 8 months ago

If a+b=14∧ab=16,then a

2

+b

2

is (a) 124 (b) 132 (c) 164 (d) 196

Answers

Answered by swati567
4

Step-by-step explanation:

Hi !a + b = 10 -------( 1 )ab = 16 -------- --( 2 )Squaring equ.1 , we get :-( a + b )² = 10²a² + 2ab + b² = 100a² + 2 × 16 + b² = 100 a² + b² + 32 = 100a²+ ...

may my answer help u

Answered by SparklingThunder
9

\huge\purple{ \underline{ \boxed{\mathbb{\red{QUESTION : }}}}}

If a + b = 14 and ab = 16 then  \sf {a}^{2}  +  {b}^{2} ?

\huge\purple{ \underline{ \boxed{\mathbb{\red{ANSWER : }}}}}

(c) \sf {a}^{2}  +  {b}^{2} =  164

\huge\purple{ \underline{ \boxed{\mathbb{\red{EXPLANATION : }}}}}

\green{ \large \underline{ \mathbb{\underline{GIVEN : }}}}

  • a + b = 14

  • ab = 16

\green{ \large \underline{ \mathbb{\underline{TO  \: FIND : }}}}

 \sf {a}^{2}  +  {b}^{2}

 \green{ \large \underline{ \mathbb{\underline{FORMULAS \:  USED: }}}}

 \blue {\sf {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab}

\green{ \large \underline{ \mathbb{\underline{SOLUTION: }}}}

We know that :

  • a + b = 14

Squaring both sides :

 \displaystyle \sf  \longrightarrow  {(a + b)}^{2}  =  {(14)}^{2}  \: \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \sf  \longrightarrow   {a}^{2}  +  {b}^{2}  + 2ab = 196 \:  \\  \\ \displaystyle \sf  \longrightarrow  {a}^{2}  +  {b}^{2} = 196 - 2ab \:

Now , we know that :

  • ab = 16

Putting value of ab in above equation , we get

\displaystyle \sf  \longrightarrow  {a}^{2}  +  {b}^{2} = 196 - 2(16) \: \\  \\  \displaystyle \sf  \longrightarrow   {a}^{2}  +  {b}^{2} = 196 - 32 \:  \:  \:  \:  \:  \:  \\  \\\displaystyle \sf  \longrightarrow   {a}^{2}  +  {b}^{2} = 196 - 32 \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \sf  \longrightarrow    {a}^{2}  +  {b}^{2} = 164 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \blue{ \Large\boxed{ \therefore \:  \sf  {a}^{2} +  {b}^{2}  = 164  \: }}

Similar questions