Math, asked by aimykhan1234, 1 month ago

If a +b=14 and ab = 16 then a2+b2?


Answers

Answered by SparklingThunder
2

\huge\purple{ \underline{ \boxed{\mathbb{\red{QUESTION : }}}}}

If a + b = 14 and ab = 16 then find  \sf {a}^{2}  +  {b}^{2} ?

\huge\purple{ \underline{ \boxed{\mathbb{\red{ANSWER : }}}}}

\sf {a}^{2}  +  {b}^{2} =  164

\huge\purple{ \underline{ \boxed{\mathbb{\red{EXPLANATION : }}}}}

\green{ \large \underline{ \mathbb{\underline{GIVEN : }}}}

  • a + b = 14

  • ab = 16

\green{ \large \underline{ \mathbb{\underline{TO  \: FIND : }}}}

  •  \sf {a}^{2}  +  {b}^{2}

 \green{ \large \underline{ \mathbb{\underline{FORMULAS \:  USED: }}}}

 \blue {\sf {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab}

\green{ \large \underline{ \mathbb{\underline{SOLUTION: }}}}

We know that :

  • a + b = 14

Squaring both sides :

 \displaystyle \sf  \longrightarrow  {(a + b)}^{2}  =  {(14)}^{2}  \: \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \sf  \longrightarrow   {a}^{2}  +  {b}^{2}  + 2ab = 196 \:  \\  \\ \displaystyle \sf  \longrightarrow  {a}^{2}  +  {b}^{2} = 196 - 2ab \:

Now , we know that :

  • ab = 16

Putting value of ab in above equation , we get

\displaystyle \sf  \longrightarrow  {a}^{2}  +  {b}^{2} = 196 - 2(16) \: \\  \\  \displaystyle \sf  \longrightarrow   {a}^{2}  +  {b}^{2} = 196 - 32 \:  \:  \:  \:  \:  \:  \\  \\\displaystyle \sf  \longrightarrow   {a}^{2}  +  {b}^{2} = 196 - 32 \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \sf  \longrightarrow    {a}^{2}  +  {b}^{2} = 164 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \blue{ \Large\boxed{ \therefore \:  \sf  {a}^{2} +  {b}^{2}  = 164  \: }}

Similar questions