If a +b = 14 and ab = 25, find a4+b4
Answers
Answered by
7
Required Answer:-
Given:
- a + b = 14
- ab = 25
To find:
- The value of a⁴ + b⁴
Solution:
Given that,
➡ a + b = 14
Squaring both sides, we get,
➡ (a + b)² = 14²
➡ a² + 2ab + b² = 196
➡ a² + b² + 2 × 25 = 196
➡ a² + b² + 50 = 196
➡ a² + b² = 196 - 50
➡ a² + b² = 146
Again, squaring both sides, we get,
➡ (a² + b²)² = (146)²
➡ a⁴ + b⁴ + 2a²b² = 21316
➡ a⁴ + b⁴ + 2(ab)² = 21316
➡ a⁴ + b⁴ + 2 × 25² = 21316
➡ a⁴ + b⁴ + 2 × 625 = 21316
➡ a⁴ + b⁴ + 1250 = 21316
➡ a⁴ + b⁴ = 21316 - 1250
➡ a⁴ + b⁴ = 20,066
Hence,
➡ a⁴ + b⁴ = 20,066
Answer:
- a⁴ + b⁴= 20,066
Identity Used:
➡ (a + b)² = a² + 2ab + b²
More Identities:
➡ (a - b)² = a² - 2ab + b²
➡ a² - b² = (a + b)(a - b)
➡ (a + b)² = (a - b)² + 4ab
➡ (a - b)² = (a + b)² - 4ab
➡ 4ab = (a + b)² - (a - b)²
➡ (a + b)³ = a³ + b³ + 3ab(a + b)
➡ (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions